When a neutron strikes a nucleus, any of the reactions discussed above may take place, depending on the nucleus and the neutron energy. What determines, then, which reaction will occur? In the case of $\mathrm{U}-238$, for instance, inelastic scattering will not occur unless the neutron energy is greater than 0.1 Mev . To put it another way, there is no chance or probability of inelastic scattering occurring with U-238 unless the neutron energy is greater than 0.1 Mev . We could also say that the chance or probability of $\mathrm{U}-235$ fission occurring is greater with thermal neutrons than with fast neutrons, ie, the probability increases as the neutron energy decreases.

Thus we are always comparing the chances in favour of the various reactions taking place. It is the probability of a particular reaction occurring that is important. Some reactions are more probable with some nuclei than with others or more probable with some neutron energies than with others. Because these reactions are concerned with a neutron striking a target, namely a nucleus, the probability that a particular reaction will occur is measured in terms of a quantity called the nuclear or neutron cross section.

Neutron Cross Sections and Neutron Flux

To examine the precise measuring of the term "cross section", let us look at what happens when n neutrons per unit volume move with velocity v towards a thin target of surface area S. We will assume that the whole target area is exposed to neutrons, and that all the neutrons travel in the same direction x (see Fig. l).

Fig. 1 Neutron Bombardment of a Thin Target

From experiment it is found that the rate R at which a particular reaction occurs is proportional to every one of the following:
(a) $n_{x} v$, the number of neutrons striking the target in the x direction per unit area and time;
(b) S, the surface area of the target;
(c) dx, the thickness of the target - this is assumed to be sufficiently small for no "shadowing" of the nuclei to occur;
(d) N', a symbol reserved in this course for the number of nuclei per unit volume.

Therefore:

$$
\begin{aligned}
R & \propto n_{x} v \cdot N^{\prime} \cdot S d x \\
\text { or } \quad R & =\sigma \cdot n_{x} v^{\prime} \cdot N^{\prime} \cdot S d x
\end{aligned}
$$

σ (sigma) is the constant of proportionality, and could be defined as "the interaction rate per atom in the target per unit nv". It is called the microscopic cross section, and a little bit of fooling around with units will show that it has dimensions of area. The usual unit is the barn (abbreviated b);

$$
1 \mathrm{~b}=10^{-28} \mathrm{~m}^{2}=10^{-24} \mathrm{~cm}^{2} ;
$$

it is the same order of magnitude as the physical diameter of a medium size nucleus.

The reaction rate per unit volume of target material is now seen to be:

$$
\mathrm{R}=\mathrm{n}_{\mathrm{x}} \mathrm{v} \cdot \mathrm{~N} \cdot \sigma
$$

Since N^{\prime} and σ are both characteristic of the target material, they are often combined to form the:

```
macroscopic cross section }\Sigma=N=
```

We can now go on to consider neutrons arriving from all directions with the same velocity (see Fig. 2).

For a target of unit volume

$$
\begin{aligned}
R(\text { total }) & =N^{\prime} \sigma\left(n_{1} v+n_{2} v+\ldots n_{i} v+\ldots\right) \\
& =n v \cdot N^{\prime} \sigma
\end{aligned}
$$

Where n is the neutron density, which is the number of neutrons per unit volume regardless of their direction of motion. nv is known as the neutron flux density (symbol ϕ and often just called

Fig. 2 Isotropic Neutron Bombardment
neutron flux for short). It is usually expressed in units of neutrons. $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$.

The reaction rate for any material exposed to flux ϕ is then:

$$
\underline{R}=\phi \Sigma \text { per unit volume }
$$

Incidentally, it is a common misconception that the neutron flux can be defined as the number of neutrons striking unit area per second. This would be true for a beam, but not for random directions in which case the number hitting unit area would be less (by a factor of 2 actually). If you insist on a connection with area, it can be proved that ϕ is the number of neutrons entering an imaginary sphere each second, of total surface area $4 \mathrm{~cm}^{2}$ and diametral prane area $1 \mathrm{~cm}^{2}$.

Another point worth mentioning is that when the neutrons have a range of speeds, an appropriate average cross section is usually chosen. For instance, the detailed structure of the thermal neutron distribution can often be ignored (it certainly will be in this course!), if average thermal cross sections are used.

Since different reactions occur with different probabilities, they will have different cross sections. Throughout this course the following nomenclature will be used:-

```
\sigma
\sigmaa}= absorption cross section
\sigma
\sigmai
```

In those few cases where $\sigma_{f} \neq 0$, both fission and radiative capture involve a complete absorption of the neutron, and then σ usually includes both reactions, ie, $\sigma_{a}=\sigma_{f}+\sigma_{n} \gamma$.

For your reference, Table 1 on pages 6 and 7 lists the absorption and elastic scattering cross sections for thermal neutrons only (cross sections usually are strongly energy dependent). We can already arrive at some interesting conclusions by taking a look at these.
(a) Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is a better scatterer of neutrons than heavy water ($\mathrm{D}_{2} 0$) or graphite (carbon), but it is also a much heavier absorber than either. This has important implications in choosing a moderator.
(b) Boron and cadmium have very high values of σ_{a} and therefore are excellent materials when neutron absorption is required, as, for example, in control rods of a reactor.
(c) The capture cross section of zirconium is much smaller than that of iron. This explains the use of zirconium alloys instead of steel for pressure tubes and fuel sheathing in our reactors.

To appreciate the significance of these cross sections, let us look at a typical problem:

Cobalt-60 gamma sources for radiation therapy units are produced by irradiating cobalt pellets in reactors. A typical pellet might be $\frac{1}{4}$ " in diameter and $1^{\prime \prime}$ long. Calculate the activity in curies built up in one of these pellets after it has been irradiated for two years in a thermal neutron flux of $5 \times 10^{13} n . \mathrm{cm}^{-2} \mathrm{~s}^{-1}$.

All the data required to solve this problem is already given in the Chart of the Nuclides at the end of the first lesson, and in Table 1 of this lesson (page 6):-

Natural cobalt is 100% Co-59; half-1ife of Co-60 $=5.3 \mathrm{y}$; σ_{a} of Co-59 $=37 \mathrm{~b}$; $\rho=8.8 \mathrm{gcm}^{-3}$.
X use 5.2
We must first write down the differential equation relating Co-60 production and decay per unit volume, ie,

$$
\frac{d c}{d t}=\phi \Sigma_{a}-c \lambda,
$$

where c is the concentration of $C o-60, \lambda$ its hatf-ife, and Σ_{a} the macroscopic absorption cross section of Co-59. Solving this equation yields:

$$
c=\frac{\phi \Sigma a}{\lambda}\left(1-e^{-\lambda t}\right) .
$$

In other words, the cobalt activity per unit volume is:

$$
\begin{aligned}
c \lambda & =\phi \Sigma_{a}\left(1-e^{-\lambda t}\right) \\
& =\phi N^{\prime} \sigma_{a}\left(1-e^{-\lambda t}\right)
\end{aligned}
$$

With the substitution of the values $\phi=5 \times 10^{13} \mathrm{n} . \mathrm{cm}^{-2} \mathrm{~s}^{-1}$, $N^{\prime}=\frac{N}{A} o_{\rho}=9 \times 10^{22}$ atoms $\mathrm{cm}^{-3}, \sigma_{a}=37 \times 10^{-24} \mathrm{~cm}^{2}, \lambda=\frac{0.69}{5.2} \mathrm{y}^{-1}$ and $t=2 \mathrm{y}$, we get:

$$
c \lambda=3.9 \times 10^{13} \mathrm{~cm}^{-3} \mathrm{~s}^{-1}
$$

The activity has to be in units of $\mathrm{cm}^{-3} \mathrm{~s}^{-1}$, because

$$
\left(\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right) \times\left(\mathrm{cm}^{-3}\right) \times\left(\mathrm{cm}^{2}\right)=\mathrm{cm}^{3} \mathrm{~s}^{-1}
$$

To find the activity of the whole pellet in curies, we multiply by the volume and divide by $3.7 \times 10^{10} 5$

$$
\begin{aligned}
\text { Activity } & =\frac{3.9 \times 10^{13} \times \pi(0.25 \times 2.5)^{2} \times 2.5}{(4) \times 3.7 \times 10^{10}} \mathrm{Ci} \\
& =810 \mathrm{Ci}
\end{aligned}
$$

Actually, the activity will be a bit less than this because of the self-shielding of the cobalt pellets. The flux at the centre of the pellet will be less than at the outside, because some neutrons have been removed by absorption. We shall consider this next.

Attenuation of Neutrons

Consider Fig.l again. After traversing the thickness dx, some neutrons have been removed from the beam. The neutron density will be reduced by an amount dn given by:

$$
\frac{d n}{n}=-N^{\prime} \sigma d x ;
$$

if the target is of thickness x, the neutron density at x is given by:

$$
\begin{gathered}
\int_{n_{0}}^{n_{x}} \frac{d n}{n}=\int_{0}^{x} N^{\prime} \sigma d x \\
\text { or } \quad n_{x}=n_{o} e^{-N^{\prime} \sigma x}=n_{o} e^{-\Sigma x}
\end{gathered}
$$

Properties of the Elements and Certain Molecules

$\times 10^{24}$									
Element or molecule	Symbol	Atomic number	Atomic or molecular weight*	Norninal density, $\mathrm{gm} / \mathrm{cm}^{3}$	Atoms or molecules per $\mathrm{cm}^{3} \dagger$	σ_{n}, \ddagger barns	$\begin{aligned} & \sigma_{3}, \ddagger \\ & \text { barns } \end{aligned}$	$\underset{\mathrm{cm}^{-1}}{\Sigma_{n}, \dagger}$	$\begin{gathered} \Sigma_{\Sigma_{,} \dagger}^{\mathrm{cm}}{ }^{-1} \end{gathered}$
Osmium	Os	76	$190.2{ }^{2}$	22.5	0.07124 N	15	11	1.069	0.7836
Oxygen	0	8	15.9994	Gas		<0.0002	4.2		
Palladium	Pd	46	106.4	12.0	0.06792	8	3.6	0.5434	0.2445
Phosphorus (yellow)	P	15	30.9738	1.82	0.03539	0.19	5	0.006724	0.1770
Platinum	Pt	78	195.09	21.45	0.06622	10	10	0.6622	0.6622
Plutonium	Pu	94	239	19.6	0.04939	$\sigma_{a}=1015$ $\sigma_{j}=741$	9.6	$\begin{aligned} & 49.88 \\ & 36.55 \end{aligned}$	0.4741
Polonium	Po	84	210	9.51	0.02727				
Potassium	K	19	39.102	0.86	0.01325	2.1	1.5	0.02783	0.01988
Praseodymium	Pr	59	140.907	6.78	0.02898	12	4	0.1965	0.1159
Promethium	Pm	61							
Protactinium	Pa	91	231			210			
Radium	Ra	88	226	5.0	0.01332	20		0.2664	
Rhenium	Re	75	186.2	20	0.06596	85	14	5.607	0.9234
Rhodium	Rh	45	102.905	12.41	0.07263	155	5	11.26	0.3632
Rubidium	Rb	37	85.47	1.53	0.01078	0.73	12	0.007869	0.1294
Ruthenium	Ru	44	101.07	12.2	0.07270	2.5	6	0.1818	0.4362
Samarium	Sm	62	150.35	6.93	0.02776	5800	5	161.0	0.1388
Scandium	Sc	21	44.956	2.5	0.03349	23	24	0.7703	0.8038
Selenium	Se	34	78.96	4.81	0.03669	12	11	0.4403	0.4036
Silicon	Si	14	28.086	2.33	0.04996	0.16	1.7	0.1164	0.08493
Silver	Ag	47	107.870	10.49	0.05857	63	6	3.690	0.3514
Sodium	Na	11	22.9898	0.97	0.02541	0.53	4	0.01347	0.1016
Strontium	Sr	38	87.62	2.6	0.01787	1.3	10	0.02323	0.1787
Sulfur (yellow)	S	16	32.064	2.07	0.03888	0.52	1.1	0.2022	0.04277
Tantalum	Ta	73	180.948	16.6	0.05525	21	5	1.160	0.2763
Technetium	Tc	43	99			22			
Tellurium	Te	52	127.60	6.24	0.02945	4.7	5	0.1384	0.1473
Terbium	Tb	65	158.924	8.33	0.03157	46		1.452	
Thallium	Tl	81	204.37	11.85	0.03492	3.3	14	0.1152	0.4889
Thorium	Th	90	232.038	11.71	0.03039	7.4	12.6	0.2249	0.3829
Thulium	Tm	69	168.934	9.35	0.03314	125	7	4.143	0.2320
Tin	Sn	50	118.69	7.298	0.03703	0.63	4	0.02333	0.1481
Titanium	Ti	22	47.90	4.51	0.05670	6.1	4	0.3459	0.2268
Tungsten	W	74	183.85	19.2	0.06289	19	5	1.195	0.3145
Uranium	U	92	238.03	19.1	0.04833	$\sigma_{a}=7.6$	8.3	0.3673	0.4011
						$\sigma_{f}=4.2$		0.2030	
Vanadium	V	23	50.942	6.1	0.07212	4.9	5	0.3534	0.3606
Water	$\mathrm{H}_{2} \mathrm{O}$		18.0167	1.0	0.03343	0.664	103	0.02220	3.443
Xenon	Xe	54	131.30	Gas		24	4.3		
Ytterbium	Yb	70	173.04	7.01	0.02440	37	12	0.9208	0.2928
Yttrium	Y	39	88.905	5.51	0.03733	1.3	3	0.04853	0.1120
Zinc	$\mathbf{Z n}$	30	65.37	7.133	0.06572	1.10	3.6	0.07229	0.2366
Zirconium	Zr	40	91.22	6.5	0.04291	0.18	8	0.007724	0.3433

* Based on $C^{12}=12.00000$ amu.
\dagger Four-digit accuracy for computational purposes only; last digit(s) usually is not meaningfu $\left(\times 10^{24}\right.$
\ddagger Cross sections at 0.0253 eV or $2200 \mathrm{~m} / \mathrm{sec}$. The scattering cross sections, except for those or $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$, are measured values in a thermal neutron spectrum and are assumed to be 0.0253 eV values because σ_{s} is usually constant at thermal energies. The errors in σ_{s} tend to be large, and the tabulated values of σ_{2} should be used with caution. (From BNL-325, 2nd ed., 1958 plus supplements 1 and 2, 1960, 1964, and 1965.)
** The value of σ_{a} given in the table is for pure graphite. Commercial reactor-grade graphite contains varying amounts of contaminants and σ_{a} is somewhat larger, say, about 0.0048 barns, so that $\Sigma_{\mathrm{a}} \approx 0.0003851 \mathrm{~cm}^{-1}$.
$\dagger \dagger$ The value of σ_{a} given in the table is for pure $\mathrm{D}_{2} \mathrm{O}$. Commercially available heavy water contains small amounts of ordinary water and σ_{a} in this case is somewhat larger.

Table and data reprinted from Lamarsh: "Introduction to Nuclear Reactor Theory" by permission of Addison-Wesley Publishing Co. Inc.

This shows that penetration through a distance $x=1 / \Sigma$ reduces the neutron density by a factor of e. It can be shown that this distance $1 / \Sigma$ is the average distance a neutron will travel before interacting. This result does not only apply to a beam, but is quite general. The distance l / Σ is called the mean free path, and is given the symbol λ. Before applying this to a problem on mean free paths in fuel, let us list the thermal neutron cross sections of fuel atoms in Table 2 (the values of v are given for the sake of completeness). We shall make extensive use of this data later in the course.

TABLE 2
Thermal Neutron Cross Sections of Fuel Atoms (in Barns)
(taken from Atomic Energy Review (IAEA), 1969, Vol 7, No 4, p 3)

	σ_{f}	σ_{n}, γ^{v}	σ_{a}	σ_{s}	ν
$\mathrm{U}-233$	530.6	47.0	577.6	10.7	2.487
$\mathrm{U}-235$	580.2	98.3	678.5	17.6	2.430
$\mathrm{U}-238$	0	2.71	2.71	$\sim_{1} 10$	0
nat.U	4.18	3.40	7.58	${ }^{\sim} 10$	
Pu-239	741.6	271.3	1012.9	8.5	2.890
Pu-241	1007.3	368.1	1375.4	12.0	2.934

Example: Caloulate the absorption mean free path of thermal neutrons in natural uranium.

$$
\lambda_{a}=\frac{1}{\Sigma_{a}}=\frac{1}{\Sigma_{f}+\Sigma_{n}, \gamma}=\frac{1}{N^{\prime}\left(\sigma_{f}+\sigma_{n}, \gamma\right)}
$$

Using the data given in tables 1 and 2, we see that:

$$
\begin{aligned}
\lambda_{a} & =\frac{1}{0.048 \times 10^{24} \times 7.58 \times 10^{-24}} \mathrm{~cm} \\
& =2.08 \mathrm{~cm}
\end{aligned}
$$

Incidentally, this rather small value of λ_{a} helps to explain why the neutron flux at the centre of a fuel bundle is significantly smaller than at its perimeter, giving rise to a so-called flux depression.

ASSIGNMENT

1. Prove that the mean free path $\lambda=1 / \Sigma$ for any reaction.
2. U-238 has a very high absorption ($\sigma_{a}=8000 b$) for neutrons of 6.5 eV energy. What is the probability of such neutrons surviving capture in traversing natural uranium of 0.1 mm thickness?
3. Calculate the number of fission neutrons emitted per thermal neutron absorbed in natural uranium and uranium enriched in U-235 to 2% and 10%.
4. A useful expression relating the total thermal power P generated in a reactor to the average neutron flux $\bar{\phi}$ and the quantity of natural UO_{2} fuel M is given by:

$$
P=\frac{\Phi_{\cdot} M}{3 \times 10^{12}}
$$

where P is in $M W, \phi$ in $n . \mathrm{cm}^{-2} \mathrm{~s}^{-1}$ and M in Mg . The density of UO_{2} is $10.7 \mathrm{~g} . \mathrm{cm}^{-3}$. Derive this expression.
5. The neutron detectors used in Pickering start up were He-3 proportional counters. They are about $12^{\prime \prime}$ long and $2^{\prime \prime}$ in diameter, and are filled with He-3 gas at 10 atomospheres. Calculate the expected count rate per unit neutron flux assuming that each neutron reacting in the counter volume will be registered. Also explain why the actual count rate should be less than this, even if the above assumption were valid.

He-3(n,p)H-3 reaction cross-section $=5400$ b, $N_{0}=0.6 \times 10^{24}$ atoms per $22400 \mathrm{~cm}^{3}$ at standard temperature and pressure.

Pant of the

6. The predominant activity in the primary coolant during reactor operation is due to $\boldsymbol{\sigma}^{19}$. Show that the specific activity (dis. $s^{-1} \mathrm{~cm}^{-3}$) of N^{16} in the coolant as it leaves the core is given by:

$$
A=\frac{\sum \phi\left(1-e^{-\lambda t}\right)}{1-e^{-\lambda T}}
$$

where t is the core transit time and T the total circuit time.

$$
\sigma_{a} O^{18}=.21 \mathrm{mb}
$$

Calculate this activity for the Douglas Point reactor, for which $\phi=3 \times 10^{13} \mathrm{n} . \mathrm{cm}^{-2} \mathrm{~s}^{-1}, \mathrm{t}=0.8 \mathrm{~s}, \mathrm{~T}=12.7 \mathrm{~s}$ and $\mathrm{D}_{2} \mathrm{O}$ density $=0.842 \mathrm{~g} \mathrm{~cm}^{-3}$ at operating temperature.

J.U. Burnham

